
1

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

UNIT-V SIGNALS

Program must sometimes deal with unexpected or unpredictable

 events, such as :

 a floating point error

 a power failure

 an alarm clock “ring”

 the death of a child process

 a termination request from a user (i.e., Control-C)

 a suspend request from a user (i.e., Control-Z)

 - These kind of events are sometimes called interrupts, as they must interrupt

the regular flow of a program in order to be processed.

 - When UNIX recognizes that such an event has occurred, it sends the

corresponding process a signal

There is a unique, numbered signal for each possible event.

 For example,

 if a process causes a floating point error,the kernel sends the offending

process signal number 8:

any process can send any other process a signal, as long as it has permission to

do so.

 - A programmer may arrange for a particular signal to be ignored or to be

processed by a special piece of code called a signal handler.

 - the process that receives the signal

 1) suspends its current flow of control,

 2) executes the signal handler,

 3) and then resumes the original flow of control when the signal handler

finishes

Signals are defined in “/usr/include/sys/signal.h”.

 The default handler usually performs one of the following actions:

 terminate the process and generate a core file (dump)

 terminate the process without generating a core image file (quit)

 ignore and discard the signal (ignore)

 suspend the process (suspend)

 resume the process

2

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

A List of Signals

 - Here’s a list of the System V predefined signals, along with their respective

macro definitions, numerical values, and default actions, as well as a brief

description of each:

 Macro # Default Description

 SIGHUP 1 quit hang up

 SIGINT 2 quit interrupt

 SIGQUIT 3 dump quit

 SIGILL 4 dump illegal instruction

 SIGTRAP 5 dump trace trap(used by debuggers)

 SIGABRT 6 dump abort

 SIGEMT 7 dump emulator trap instruction

 SIGFPE 8 dump arithmetic execution

 SIGKILL 9 quit kill(cannot be caught, blocked, or ignored)

 SIGBUS 10 dump bus error(bad format address)

SIGSEGV 11 dump segmentation violation(out-of-range address)

 SIGSYS 12 dump bad argument to system call

 SIGPIPE 13 quit write on a pipe or other socket with no one to

read it.

 SIGALRM 14 quit alarm clock

 SIGTERM 15 quit software termination signal(default signal sent by kill)

SIGUSR1 16 quit user signal 1

 SIGUSR2 17 quit user signal 2

 SIGCHLD 18 ignore child status changed

 SIGPWR 19 ignore power fail or restart

 SIGWINCH 20 ignore window size change

 SIGURG 21 ignore urgent socket condition

 SIGPOLL 22 ignore pollable event

SIGSTOP 23 quit stopped(signal)

 SIGSTP 24 quit stopped(user)

 SIGCONT 25 ignore continued

 SIGTTIN 26 quit stopped(tty input)

 SIGTTOU 27 quit stopped(tty output)

 SIGVTALRM 28 quit virtual timer expired

 SIGPROF 29 quit profiling timer expired

 SIGXCPU 30 dump CPU time limit exceeded

 SIGXFSZ 31 dump file size limit exceeded

3

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

Terminal Signals

 - The easiest way to send a signal to a foreground process is by pressing

Control-C or Control-Z from the keyboard.

 - When the terminal driver(the piece of software that supports the terminal)

recognizes that Control-C was pressed. it sends a SIGINT signal to all of the

processes in the current foreground job.

 - Similarly, Control-Z causes it to send a SIGTSTP signal to all of the processes

in the current foreground job.

 - By default,SIGINT terminates a process and SIGTSTP suspends a process.

Requesting an Alarm Signal : alarm()
 - SIGALRM, by using “alarm()”.

 The default handler for this signal displays the message “Alarm clock” and

terminates the process.

 Here’s how “alarm()” works:

 System Call : unsigned int alarm(unsigned int count)

 “alarm()” instructs the kernel to send the SIGALRM signal to the calling

process after count seconds.

 If an alarm had already been scheduled, that alarm is overwritten.

 If count is 0, any pending alarm requests are cancelled.

 “alarm()” returns the number of seconds that remain until the alarm signal is

sent.

 a small program that uses “alarm()”, together with its output:

 $ cat alarm.c ---> list the program.

 #include <stdio.h>

 main()

 {

 alarm(3); /* Schedule an alarm signal in three seconds */

 printf(“Looping forever… \n”);

 while(1)

 printf(“This line should never be executed \n”);

 }

 $ alarm ---> run the program.

 Looping forever…

 Alarm clock ---> occurs three seconds later.

 $ -

Handling Signals : signal()
 System Call: void(*signal(int sigCode, void (*func)(int))) (int)

 “signal()” allows a process to specify the action that it will take when a

particular signal is received.

 The parameter sigCode specifies the number of the signal that is to

 be reprogrammed, and func may be one of several values:

4

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

 SIG_IGN, which indicates that the specified signal should be

 ignored and discarded.

 SIG_DFL, which indicates that the kernel’s default handler should be

used.

 an address of a user-defined function, which indicates that the function

should be executed when the specified signal arrives.

The valid signal numbers are stored in “/usr/include/signal.h”.

 The signals SIGKILL and SIGSTP may not be reprogrammed.

 A child process inherits the signal settings from its parent during a “fork()”.

 “signal()” returns the previous func value associated with sigCode if

successful; otherwise, it returns a value of -1.

- The “signal()” system call may be used to override the default action.

 - a couple of changes to the previous program so that it caught and

 processed the SIGALRM signal efficiently:

 installed my own signal handler, “alarmHandler()”,

 by using “signal()”.

System Call: int pause(void)

 “pause()” suspends the calling process and returns when the calling process

receives a signal.

 It is most often used to wait efficiently for an alarm signal.

 “pause()” doesn’t return anything useful.

$ cat handler.c ---> list the program.

 #include <stdio.h>

 #include <signal.h>

 int alarmFlag = 0; /* Global alarm flag */

 void alarmHandler(); /* Forward declaration of alarm handler */

 /***/

 main()

 {

 signal(SIGALRM, alarmHandler); /* Install signal handler */

 alarm(3); /* Schedule an alarm signal in three seconds */

 printf(“Looping…\n”);

 while(!alarmFlag) /* Loop until flag set */

 {

 pause(); /* Wait for a signal */

 }

 printf(“Loop ends due to alarm signal \n”);

 }

 void alarmHandler()

 {

 printf(“An alarm clock signal was received \n”);

 alarmFlag=1;

 }

5

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

 $ handler ---> run the program.

 Looping…

 An alarm clock signal was received ---> occurs three seconds later.

 Loop ends due to alarm signal

Protecting Critical Code and Chaining Interrupt Handlers
 - The same techniques that I just described may be used to protect critical

pieces of code against Control-C attack and other such signals.

 - it can be restored after the critical code has executed.

 Here’s the source code of a program that protects itself against

 SIGINT signals:

 $ cat critical.c ---> list the program.

 #include <stdio.h>

 #include <signal.h>

 main()

 {

 void (*oldHandler) () /* To hold old handler value */

 printf(“I can be Control-C’ed \n”);

 sleep(3);

 oldHandler = signal(SIGINT, SIG_IGN); /* Ignore Control-C */

 printf(“I’m protected from Control-C now\n”);

 sleep(3);

 signal(SIGINT, oldHandler); /* Restore old handler */

 printf(“I can be Control-C’ed again \n”);

 sleep(3);

 printf(“Bye! \n”);

 }

 $ critical ---> run the program.

 I can be Control-C’ed

 ^C ---> Control-C works here.

 $ critical ---> run the program again.

 I can be Control-C’ed

 I’m protected from Control-C now

 ^C

 I can be Control-C’ed again

 Bye!

 Sending Signals: kill()

 - A process may send a signal to another process by using the “kill()”

 system call.

 - “kill()” is a misnomer, since many of the signals that it can send to do not

terminate a process.

 - It’s called “kill()” because of historical reasons;

 the main use of signals when UNIX was first designed was to terminate

processes.

6

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

System Call: int kill(pid_t pid, int sigCode)

 “kill()” sends the signal with value sigCode to the process with PID pid.

 “kill()” succeeds and the signal is sent as long as at least one of

 the following conditions is satisfied:

 The sending process and the receiving process have the same owner.

 The sending process is owned by a super-user.

 There are a few variations on the way that “kill()” works:

 If pid is zero, the signal is sent to all of the processes in the sender’s process

group.

 If pid is -1 and the sender is owned by a super-user, the signal is sent to all

processes, including the sender.

If pid is -1 and the sender is not owned by a super-user, the signal is sent to all

of the processes owned by the same owner as that of the sender, excluding the

sending process.

 If the pid is negative, but not -1, the signal is sent to all of the processes in

the process group.

Death of Children

 - When a parent’s child terminates, the child process sends its parent a

SIGCHLD signal.

 - A parent process often installs a handler to deal with this signal; this handler

typically executes a “wait()” system call to accept the child’s termination code

and let the child dezombify.

 - the parent can choose to ignore SIGCHLD signals, in which case the child

dezombifies automatically.

- The program works by performing the following steps:

 1. The parent process installs a SIGCHLD handler that is executed when its

child process terminates.

 2. The parent process forks a child process to execute the command.

 3. The parent process sleeps for the specified number of seconds. when it

wakes up, it sends its child process a SIGINT signal to kill it.

 4. If the child terminates before its parent finishes sleeping, the parent’s

SIGCHLD handler is executed, causing the parent to terminate immediately.

- Here’s the source code for and sample output from the program.

 $ cat limit.c ---> list the program.

 #include <stdio.h>

 #include <signal.h>

 int delay;

 void childHandler();

 /**/

 main(argc, argv)

 int argc;

 char* argv[];

 {

7

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

 int pid;

 signal(SIGCHLD, childHandler); /* Install death-of-child handler */

 pid = fork(); /* Duplicate */

 if (pid == 0) /* Child */

 {

 execvp(argv[2], &argv[2]); /* Execute command */

 perror(“limit”); /* Should never execute */

 }

else /* Parent */

 {

 sscanf(argv[1], “%d”, &delay); /* Read delay from command-line */

 sleep(delay); /* Sleep for the specified number of seconds */

 printf(“Child %d exceeded limit and is being killed \n”, pid);

 kill(pid, SIGINT); /* Kill the child */

 }

}

/***/

void childHandler() /* Executed if the child dies before the parent */

{

 int childPid, childStatus;

 childPid = wait(&childStatus); /* Accept child’s termination code */

 printf(“Child %d terminated within %d seconds \n”, childPid, delay);

 exit(/* EXIT SUCCESS */ 0);

}

$ limit 5 ls ---> run the program; command finishes OK.

 a.out alarm critical handler limit

 alarm.c critical.c handler.c limit.c

 Child 4030 terminated within 5 seconds.

 $ limit 4 sleep 100 ---> run it again; command takes too long

 Child 4032 exceeded limit and is being killed.

 $ -

pause - wait for signal

#include <unistd.h>

int pause(void);
DESCRIPTION

The pause() library function causes the invoking process (or thread) to sleep

until a signal is received that either terminates it or causes it to call a signal-

catching function.

RETURN VALUE

The pause() function only returns when a signal was caught and the signal-

catching function returned. In this case pause() returns -1, and errno is set

to EINTR.

NAME

8

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

kill - send signal to a process

SYNOPSIS

#include <sys/types.h>

#include <signal.h>

int kill(pid_t pid, int sig);

DESCRIPTION

The kill() system call can be used to send any signal to any process group or

process.

If pid is positive, then signal sig is sent to pid.

If pid equals 0, then sig is sent to every process in the process group of the

current process.

If pid equals -1, then sig is sent to every process for which the calling process

has permission to send signals, except for process 1 (init), but see below.

If pid is less than -1, then sig is sent to every process in the process group -pid.

If sig is 0, then no signal is sent, but error checking is still performed.

For a process to have permission to send a signal it must either be privileged or

the real or effective user ID of the sending process must equal the real or saved

set-user-ID of the target process. In the case of SIGCONT it suffices when the

sending and receiving processes belong to the same session.

RETURN VALUE

On success (at least one signal was sent), zero is returned. On error, -1 is

returned, and errno is set appropriately.

Abort():

The C library function void abort(void) abort the program execution and comes

out directly from the place of the call.

Declaration

Following is the declaration for abort() function.

void abort(void)

Return Value

This function does not return any value.

Example

The following example shows the usage of abort() function.

#include <stdio.h>

#include <stdlib.h>

int main ()

{

 FILE *fp;

 printf("Going to open nofile.txt\n");

 fp = fopen("nofile.txt","r");

 if(fp == NULL)

 {

 printf("Going to abort the program\n");

 abort();

9

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

 }

 printf("Going to close nofile.txt\n");

 fclose(fp);

 return(0);

}

Let us compile and run the above program that will produce the following result

when it tries to open nofile.txt file, which does not exist:

Going to open nofile.txt

Going to abort the program

Aborted (core dumped)

Raise():

The C library function int raise(int sig) causes signal sig to be generated. The

sig argument is compatible with the SIG macros.

Declaration

Following is the declaration for signal() function.

int raise(int sig)

Parameters

sig − This is the signal number to send. Following are few important standard

signal constants −macro signal

SIGABRT (Signal Abort) Abnormal termination, such as is initiated by the

abort function.

SIGFPE (Signal Floating-Point Exception) Erroneous arithmetic operation,

such as zero divide or an operation resulting in overflow (not necessarily with a

floating-point operation).

SIGILL (Signal Illegal Instruction) Invalid function image, such as an

illegal instruction. This is generally due to a corruption in the code or to an

attempt to execute data.

SIGINT (Signal Interrupt) Interactive attention signal. Generally generated

by the application user.

SIGSEGV (Signal Segmentation Violation) Invalid access to storage − When

a program tries to read or write outside the memory it is allocated for it.

SIGTERM (Signal Terminate) Termination request sent to program.

Return Value

This function returns zero if successful, and non-zero otherwise.

Example

The following example shows the usage of signal() function.

#include <signal.h>

#include <stdio.h>

void signal_catchfunc(int);

int main()

{

 int ret;

10

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

 ret = signal(SIGINT, signal_catchfunc);

 if(ret == SIG_ERR)

 {

 printf("Error: unable to set signal handler.\n");

 exit(0);

 }

 printf("Going to raise a signal\n");

 ret = raise(SIGINT);

 if(ret !=0)

 {

 printf("Error: unable to raise SIGINT signal.\n");

 exit(0);

 }

 printf("Exiting...\n");

 return(0);

}

void signal_catchfunc(int signal)

{

 printf("!! signal caught !!\n");

}

Let us compile and run the above program to will produce the following result −

Output:

Going to raise a signal

!! signal caught !!

Exiting...

Interprocess Communication:

Interprocess Communication(IPC) is the generic term describing how two

processes may exchange information with each other.

 - In general, the two processes may be running on the same machine or on

different machines, although some IPC mechanisms may only support local

usage

 (e.g., signals and pipes)

 - This communication may be an exchange of data for which two or more

processes are cooperatively processing the data or synchronization information

to help two independent, but related, processes schedule work so that they do

not destructively overlap.

Pipes are an interprocess communication mechanism that allows two or more

processes to send information to each other.

 - commonly used from within shells to connect the standard output of one

utility to the standard input of another.

 - For example, here’s a simple shell command that determines how many

users there are on the system:

11

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

 $ who | wc -l

 - The who utility generates one line of output per user. This output is then

“piped” into the wc utility, which, when invoked with the “-l” option, outputs

the total number of lines in its input.

- It’s important to realize that both the writer process and the reader process of a

pipeline execute concurrently;

 - a pipe automatically buffers the output of the writer and suspends the writer

if the pipe gets too full.

 - Similarly, if a pipe empties, the reader is suspended until some more output

becomes available.

 - All versions of UNIX support unnamed pipes, which are the kind of pipes

that shells use.

 - System V also supports a more powerful kind of pipe called a named pipe.

Unnamed Pipes: “pipe()”

 - An unnamed pipe is a unidirectional communications link that automatically

buffers its input (the maximum size of the input varies with different versions

of UNIX, but is approximately 5K)and may be created using the “pipe()”

system call.

 - Each end of a pipe has an associated file descriptor.

 The “write” end of the pipe may be written to using “write()”, and the

“read” end may be read from using “read()”.

 - When a process has finished with a pipe’s file descriptor.

 it should close it using “close()”.

System Call : int pipe(int fd[2])

 “pipe()” creates an unnamed pipe and returns two file descriptors:

 The descriptor associated with the “read” end of the pipe is stored in fd[0],

 and the descriptor associated with the “write” end of the pipe is stored in

fd[1].

 If a process reads from a pipe whose “write” end has been closed,

 the “read()” call returns a value of zero, indicating the end of input.

12

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

 If a process reads from an empty pipe whose “write” end is still open, it

sleeps until some input becomes available.

If a process tries to read more bytes from a pipe than are present, all of the

current contents are returned and “read()” returns the number of bytes actually

read.

 If a process writes to a pipe whose “read” end has been closed, the write

fails and the writer is sent a SIGPIPE signal. the default action of this signal is

to terminate the receiver.

 If a process writes fewer bytes to a pipe than the pipe can hold, the

“write()” is guaranteed to be atomic; that is, the writer process will complete its

system call without being preempted by another process.

 If the kernel cannot allocate enough space for a new pipe, “pipe()” returns a

value of -1; otherwise, it returns a value of 0.

 - Assume that the following code was executed:

 int fd[2];

 pipe(fd);

\

Unnamed pipes are usually used for communication between a parent process

and its child, with one process writing and the other process reading.

 The typical sequence of events for such a communication is as follows:

 1. The parent process creates an unnamed pipe using “pipe()”.

 2. The parent process forks.

 3. The writer closes its “read” end of the pipe, and the designated reader

closes its “write” end of the pipe.

 4. The processes communicate by using “write()” and “read()” calls.

 5. Each process closes its active pipe descriptor when it’s finished with it.

- Bidirectional communiation is only possible by using two pipes.

 Here’s a small program that uses a pipe to allow the parent to read a message

from its child:

 $ cat talk.c ---> list the program.

 #include <stdio.h>

 #define READ 0 /* The index of the “read” end of the pipe */

 #define WRITE 1 /* The index of the “write” end of the pipe */

 char* phrase =“Stuff this in your pipe and smoke it”;

13

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

 main()

 {

 int fd[2], bytesRead;

 char message[100]; /* Parent process’ message buffer */

 pipe(fd); /* Create an unnamed pipe */

 if (fork() == 0) /* Child, write */

 {

 close(fd[READ]); /* Close unused end */

 write(fd[WRITE], phrase, strlen(phrase)+1); /* Send */

 close(fd[WRITE]); /* Close used end */

 }

 else /* Parent, reader */

 {

 close(fd[WRITE]); /* Close unused end */

 bytesRead = read(fd[READ], message, 100); /* Receive */

 printf(“Read %d bytes: %s \n”, bytesRead, message);

 close(fd[READ]); /* Close used end */

 }

 }

 $ talk ---> run the program.

 Read 37 bytes: Stuff this in your pipe and smoke it

 $ _

The child included the phrase’s NULL terminator as part of the message

 so that the parent could easily display it.

 - When a writer process sends more than one variable-length message into a

pipe, it must use a protocol to indicate to the reader the location for the end of

the message.

 Methods for such indication include :

 • sending the length of a message(in bytes) before sending the message itself

 • ending a message with a special character such as a new line or a NULL

- UNIX shells use unnamed pipes to build pipelines.

 connecting the standard output of the first to the standard input of the second.

 $ cat connect.c ---> list the program.

 #include <stdio.h>

 #define READ 0

 #define WRITE 1

 main(argc, argv)

 int argc;

 char* argv[];

 {

 int fd[2];

 pipe(fd); /* Create an unnamed pipe */

 if (fork()!=0) /* Parent, writer */

14

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

 {

 close(fd[READ]); /* Close unused end */

 dup2(fd[WRITE], 1); /* Duplicate used end to stdout */

 close(fd[WRITE]); /* Close original used end */

 execlp(argv[1], argvp[1], NULL); /* Execute writer program */

 perror(“connect”); /* Should never execute */

 }

 else /* Child, reader */

 {

 close(fd[WRITE]); /* Close unused end */

 dup2(fd[READ], 0); /* Duplicate used end to stdin */

 close(fd[READ]); /* Close original used end */

 execlp(argv[2], argv[2], NULL); /* Execute reader program */

 perror(“connect”); /* Should never execute */

 }

}

$ who ---> execute “who” by itself.

gglass ttyp0 Feb 15 18:15 (xyplex_3)

$ connect who wc ---> pipe “who” through “wc”.

 1 6 57 …1 line, 6 words, 57 chars.

$ _

 Named Pipes

 - Named pipes, often referred to as FIFOs(first in, first out), are less

restricted than unnamed pipes and offer the following advantages:

 They have a name that exists in the file system.

 They may be used by unrelated processes.

 They exist until explicitly deleted.

 - Unfortunately, they are only supported by System V.

 named pipes have a larger buffer capacity, typically about 40K.

 - Named pipes exist as special files in the file system and may be created in

one of two ways:

 by using the UNIX mknod utility

 by using the “mknod()” system call

- To create a named pipe using mknod, use the “p” option.

 The mode of the named pipe may be set using chmod, allowing others to

access the pipe that you create.

 Here’s an example of this procedure:

 $ mknod myPipe p ---> create pipe.

 $ chmod ug+rw myPipe ---> update permissions.

 $ ls -lg myPipe ---> examine attributes.

 prw-rw---- 1 glass cs 0 Feb 27 12:38 myPipe

- To create a named pipe using “mknod()”, specify “S_IFIFO” as the file mode.

15

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

 The mode of the pipe can then be changed using “chmod()”.

 - C code that creates a name pipe with read and write permissions

 for the owner and group:

 mknod(“myPipe”, SIFIFO, 0); /* Create a named pipe */

 chmod(“myPipe”, 0660); /* Modify its permission flags */

 - Once a named pipe is opened using “open()”,

 “write()” adds data at the start of the FIFO queue, and

 “read()” removes data from the end of the FIFO queue.

When a process has finished using a named pipe, it should close it using

“close()”, and

 - when a named pipe is no longer needed, it should be removed from the file

system using “unlink()”.

 - Like an unnamed pipe, a named pipe is intended only for use as a

unidirectional link.

 - Writer processes should open a named pipe for writing only, and reader

processes should open a pipe for reading only.

 Although a process can open a named pipe for both reading and writing, this

usage doesn’t have much practical application.

- an example program that uses named pipes, here are a couple of special rules

concerning their use:

 If a process tries to open a named pipe for reading only and no process

currently has it open for writing, the reader will wait until a process opens it for

writing, unless O_NONBLOCK or O_NDELAY is set, in which case “open()”

succeeds immediately.

 If a process tries to open a named pipe for writing only and no process

currently has it open for reading, the writer will wait until a process opens it for

reading, unless O_NONBLOCK or O_NDELAY is set, in which case “open()”

fails immediately.

 Named pipes will not work across a network.

The next examples uses two programs, “reader” and “writer”, to demonstrate

the use of named pipes,

 A single reader process that creates a named pipe called “aPipe” is

executed.

 It then reads and displays NULL-terminated lines from the pipe until the

pipe is closed by all of the writing processes.

 One or more writer processes are executed, each of which opens the named

pipe called “aPipe” and sends three messages to it.

 If the pipe does not exist when a writer tries to open it, the writer retries

every second until it succeeds. When all of a writer’s messages are sent, the

writer closes the pipe and exits.

- Sample Output

 $ reader & writer & writer & ---> start 1 reader, 2 writers.

16

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

 [1] 4698 ---> reader process.

 [2] 4699 ---> first writer process.

 [3] 4700 ---> second writer process.

 Hello from PID 4699

 Hello from PID 4700

 Hello from PID 4699

 Hello from PID 4700

 Hello from PID 4699

 Hello from PID 4700

 [2] Done writer ---> first writer exists.

 [3] Done writer ---> second writer exists.

 [4] Done reader ---> reader exists.

- Reader Program

 #include <stdio.h>

 #include <sys/types.h>

 #include <sys/stat.h> /* For SIFIFO */

 #include <fcntl.h>

 /***/

 main()

 {

 int fd;

 char str[100];

 unlink(“aPipe”); /* Remove named pipe if it already exists */

 mknod(“aPipe”, S_IFIFO, 0); /* Create name pipe */

 chmod(“aPipe”, 0660); /* Change its permissions */

 fd = open(“aPipe”, O_RDONLY); /* Open it for reading */

 while(readLine(fd, str)); /* Display received messages */

 printf(“%s\n”, str);

 close(fd); /* Close pipe */

 }

 /**/

 readLine(fd, str)

 int fd;

 char* str;

 /* Read s single NULL-terminated line into str from fd */

 /* Return 0 when the end of input is reached and 1 otherwise */

 {

 int n;

 do /* Read characters until NULL or end of input */

 {

 n = read(fd, str, 1); /* Read one character */

 }

17

UNIX IT5T1 PVPSIDDHARTHA INSTITUTE OF TECHNOLOGY

 while (n>0 && *str++ != NULL);

 return (n> 0); /* Return false if end of input */

 }

Writer Program

 #include <stdio.h>

 #include <fcntl.h>

 /**/

 main()

 {

 int fd, messageLen, i;

 char message[100];

 /* Prepare message */

 sprintf(message, “Hello from PID %d”, getpid());

 messageLen = strlen(message) +1;

 do /* Keep trying to open the file until successful */

 {

 fd = open(“aPipe”, O_WRONLY); /*Open named pipe for writing */

 if (fd == -1) sleep(1); /* Try again in 1 second */

 } while (fd == -1);

 for (i=1; i<=3; i++) /* Send three messages */

 {

 write(fd, message, messageLen); /* Write message down pipe */

 sleep(3); /* Pause a while */

 }

 close(fd); /* Close pipe descriptor */

 }

